Article ID Journal Published Year Pages File Type
831775 Materials & Design (1980-2015) 2010 7 Pages PDF
Abstract

The anodizing and accumulative roll bonding (ARB) processes are used in this paper as a new, effective alternative for manufacturing high-strength and highly-uniform aluminum/alumina composites. Four different thicknesses of alumina layers are grown on the substrate using an anodizing process and the microstructural evolution and mechanical properties of the resulting aluminum/alumina composite are investigated. Microscopic investigations of the composite show a uniform distribution of alumina particles in the matrix. It is found that alumina layers produced by the anodizing process neck, fracture, and depart as the number of accumulative roll bonding passes increases. During ARB, it is observed that as strain increases with the number of passes, the strength and elongation of the produced composites correspondingly increase. Also, by increasing alumina quantity, tensile strength improves so that the tensile strength of the Al/3.55 vol.% Al2O3 composite becomes ∼3.5 times greater than that of the annealed aluminum used as raw material.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, ,