Article ID Journal Published Year Pages File Type
831978 Materials & Design (1980-2015) 2010 6 Pages PDF
Abstract

The shear punch testing (SPT) technique and the uniaxial tension tests were employed to evaluate the mechanical properties of the equal channel angularly pressed (ECAPed) AZ31 magnesium alloy. After extruding, the material was ECAPed for 1, 2, and 4 passes using route BC. The grain structure of the material was refined from 20.2 to 1.6 μm after 4 passes of ECAP at 200 °C. The 4 pass ECAPed alloy showed lower yield stress and higher ductility as compared to the as-extruded condition, indicating that texture softening has overcome the strengthening effects of grain refinement. The same trends in strength and ductility were also observed in shear punch testing. Similar shear strength and ductility values of the samples taken perpendicular to the extrusion direction (ED) and normal direction (ND) after 4 passes of ECAP indicated that {0 0 0 2} basal planes were inclined (∼45°) to the extrusion axis. The shear punch testing technique was found to be a useful method for verifying directional mechanical properties of the miniature samples of the ECAPed magnesium alloys.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, ,