Article ID Journal Published Year Pages File Type
832051 Materials & Design (1980-2015) 2010 7 Pages PDF
Abstract

A hierarchical multiscale approach is applied to study the tensile strength of fiber-reinforced composites. The approach is carried out in three scales: micro, meso and macro-scales, which are linked by information transfer from small to large-scale. In micro-scale, a 3D column model was established to calculate the residual stresses, which is fed into mesoscale for interfacial friction stress; in mesoscale, a representative volume (RVE) with a central broken fiber and four neighbor fibers is modeled, where matrix plastic hardening is considered. Local stress distribution in RVE is simulated by shear-lag model, and transferred into macro-scale for progressive damage simulation. In macro-scale, Monte Carlo simulations with the present shear-lag model were then conducted to obtain the ultimate tensile strength. Through this hierarchical multiscale simulation, composite macro-performance can be predicted by micro-scale parameters, this relationship will give a reference for composite design and optimization.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , , ,