Article ID Journal Published Year Pages File Type
832089 Materials & Design (1980-2015) 2010 9 Pages PDF
Abstract

A finite difference technique is developed to predict the second stage creep displacement rates and stress analysis of a short fiber metal matrix composite subjecting to a constant axial load through a micromechanical approach. The technique is capable to take into account the presence of interfacial debonding as one of the main factors affecting the creep performance of short fiber composites. The exponential law is adopted to describe the matrix creep behavior. Also, a model for prediction of interfacial debonding at fiber/matrix interface is developed using a stress based method. The obtained results could greatly help to better understand the flow pattern of matrix material and the load transfer mechanism between fiber and matrix with and without the presence of interfacial debond. The predicted strain rate by the proposed approach exhibits good agreement with the experimental results.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , ,