Article ID Journal Published Year Pages File Type
832438 Materials & Design (1980-2015) 2009 4 Pages PDF
Abstract

EN–SiC coatings are recognized for their hardness and wear resistance. In this work electroless Ni–P coatings containing nano SiC particles were co-deposited on St37 tool steel substrate. Scanning electron microscopy (SEM), energy dispersive spectrum (EDS), X-ray diffraction (XRD), polarization and electrochemical impedance spectroscopy (EIS) were used to analyze morphology, structure and corrosion resistance of the coatings. The results showed that SiC nano-particles co-deposited homogeneously, and the structure of Ni–P–SiC nano-composite coatings as deposited was amorphous. Heat-treatment at 400 °C for 1 h induced crystallization of the electroless Ni–P coatings. Microhardness of electroless Ni–P–SiC composite coatings increased due to the existence of nano-particles, and reached to a maximum value after heat-treatment. Corrosion tests showed that both electroless nickel and electroless nickel composite coatings demonstrated significant improvement of corrosion resistance in salty atmosphere. Proper post heat-treatment significantly improved the coating density and structure, giving rise to enhanced corrosion resistance.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, ,