Article ID Journal Published Year Pages File Type
836966 Nonlinear Analysis: Real World Applications 2016 20 Pages PDF
Abstract

We study certain generalized Leray-alpha magnetohydrodynamics systems. We show that the solution pairs of velocity and magnetic fields to this system in two-dimension preserve their initial regularity in two cases: dissipation logarithmically weaker than a full Laplacian and zero diffusion, zero dissipation and diffusion logarithmically weaker than a full Laplacian. These results extend previous results in Zhou and Fan (2011). Moreover, we show that for a certain three-dimensional Leray-alpha magnetohydrodynamics system, sufficient condition of regularity may be reduced to a horizontal gradient or a partial derivative in just one direction of the magnetic field, reducing components from the results in Fan and Ozawa (2009).

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, ,