Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
837177 | Nonlinear Analysis: Real World Applications | 2015 | 19 Pages |
Abstract
We consider the global wellposedness of the inhomogeneous incompressible heat-conducting viscous fluids in three dimension space. We generalize the result of Fujita & Kato for Navier–Stokes to the heat-conducting inhomogeneous incompressible viscous fluids. The key point is that we get the global wellposedness under the assumption that the initial density has positive lower and upper bound and the initial temperature can be arbitrarily large.
Keywords
Related Topics
Physical Sciences and Engineering
Engineering
Engineering (General)
Authors
Xu Zhang, Zhong Tan,