Article ID Journal Published Year Pages File Type
837495 Nonlinear Analysis: Real World Applications 2012 10 Pages PDF
Abstract

We prove that the maximum norm of velocity gradients controls the possible breakdown of smooth (strong) solutions for the 3-dimensional viscous, compressible micropolar fluids. More precisely, if a solution of the system is initially regular and loses its regularity at some later time, then the loss of regularity implies the growth without the bound of the velocity gradients as the critical time approaches. Our result is a generalization of Huang et al. (2011) [13] from viscous barotropic flows to the viscous, compressible micropolar fluids. In addition, initial vacuum states are also allowed in our result.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
,