Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
837903 | Nonlinear Analysis: Real World Applications | 2011 | 14 Pages |
The existence of global-in-time weak solutions to a quantum energy-transport model for semiconductors is proved. The equations are formally derived from the quantum hydrodynamic model in the large-time and small-velocity regime. They consist of a nonlinear parabolic fourth-order equation for the electron density, including temperature gradients; an elliptic nonlinear heat equation for the electron temperature; and the Poisson equation for the electric potential. The equations are solved in a bounded domain with periodic boundary conditions. The existence proof is based on an entropy-type estimate, exponential variable transformations, and a fixed-point argument. Furthermore, we discretize the equations by central finite differences and present some numerical simulations of a one-dimensional ballistic diode.