Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
837962 | Nonlinear Analysis: Real World Applications | 2012 | 11 Pages |
In this paper, the problem of continuous gain-scheduled fault detection (FD) is studied for a class of stochastic nonlinear systems which possesses partially known jump rates. Initially, by using gradient linearization approach, the nonlinear stochastic system is described by a series of linear jump models at some selected working points. Subsequently, observer-based residual generator is constructed for each jump linear system. Then, a new observer-design method is proposed for each re-constructed system to design H∞H∞ observers that minimize the influences of the disturbances, and to formulate a new performance index that increase the sensitivity to faults. Finally, continuous gain-scheduled approach is employed to design continuous FD observers on the whole nonlinear stochastic system. Simulation example is given to show the effectiveness and potential of the developed techniques.