Article ID Journal Published Year Pages File Type
838082 Nonlinear Analysis: Real World Applications 2011 16 Pages PDF
Abstract

An epidemic model is formulated by a reaction–diffusion system where the spatial pattern formation is driven by cross-diffusion. The reaction terms describe the local dynamics of susceptible and infected species, whereas the diffusion terms account for the spatial distribution dynamics. For both self-diffusion and cross-diffusion, nonlinear constitutive assumptions are suggested. To simulate the pattern formation two finite volume formulations are proposed, which employ a conservative and a non-conservative discretization, respectively. An efficient simulation is obtained by a fully adaptive multiresolution strategy. Numerical examples illustrate the impact of the cross-diffusion on the pattern formation.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, ,