Article ID Journal Published Year Pages File Type
838359 Nonlinear Analysis: Real World Applications 2010 17 Pages PDF
Abstract

We consider a nonlinear age-structured model, inspired by hematopoiesis modelling, describing the dynamics of a cell population divided into mature and immature cells. Immature cells, that can be either proliferating or non-proliferating, differentiate in mature cells, that in turn control the immature cell population through a negative feedback. We reduce the system to two delay differential equations, and we investigate the asymptotic stability of the trivial and the positive steady states. By constructing a Lyapunov function, the trivial steady state is proven to be globally asymptotically stable when it is the only equilibrium of the system. The asymptotic stability of the positive steady state is related to a delay-dependent characteristic equation. Existence of a Hopf bifurcation and stability switch for the positive steady state is established. Numerical simulations illustrate the stability results.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , ,