Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
838414 | Nonlinear Analysis: Real World Applications | 2009 | 14 Pages |
Abstract
This paper concerns the fully fourth-order nonlinear functional equation equation(E)−ddt(ϕ∘u‴)(t)=f(t,u″(t),u‴(t),u,u′,u″),for a.a. t∈I=[a,b], with the functional boundary conditions (BC) B1(u(b),u,u′,u″)=0=B2(u′(b),u,u′,u″),B1(u(b),u,u′,u″)=0=B2(u′(b),u,u′,u″),B3(u″(a),u″(b),u‴(a),u‴(b),u,u′,u″)=0=L2(u″(a),u″(b)),B3(u″(a),u″(b),u‴(a),u‴(b),u,u′,u″)=0=L2(u″(a),u″(b)), where ϕ:R⟶Rϕ:R⟶R is an increasing homeomorphism, f:I×R2×(C(I))3⟶R,Bi,i=1,2,3, and L2L2 are suitable functions. The existence of extremal solutions for problem (E)-(BC) is proved by defining a convenient partial ordering. Some sufficient conditions to obtain lower and upper solutions are given.
Related Topics
Physical Sciences and Engineering
Engineering
Engineering (General)
Authors
Alberto Cabada, Rodrigo López Pouso, Feliz M. Minhós,