Article ID Journal Published Year Pages File Type
838551 Nonlinear Analysis: Real World Applications 2009 19 Pages PDF
Abstract

In the present paper we consider a toxin producing phytoplankton–zooplankton model in which the toxin liberation by phytoplankton species follows a discrete time variation. Firstly we consider the elementary dynamical properties of the toxic-phytoplankton–zooplankton interacting model system in absence of time delay. Then we establish the existence of local Hopf-bifurcation as the time delay crosses a threshold value and also prove the existence of stability switching phenomena. Explicit results are derived for stability and direction of the bifurcating periodic orbit by using normal form theory and center manifold arguments. Global existence of periodic orbits is also established by using a global Hopf-bifurcation theorem. Finally, the basic outcomes are mentioned along with numerical results to provide some support to the analytical findings.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, ,