Article ID Journal Published Year Pages File Type
838884 Nonlinear Analysis: Real World Applications 2007 12 Pages PDF
Abstract

In [G. Munteanu, Complex Spaces in Finsler, Lagrange and Hamilton Geometries, vol. 141, Kluwer Academic Publishers, Dordrecht, FTPH, 2004.] we underlined the motifs of a remarkable class of complex Finsler subspaces, namely the holomorphic subspaces. With respect to the Chern–Finsler complex connection (see [M. Abate, G. Patrizio, Finsler Metrics—A Global Approach, Lecture Notes in Mathematics, vol. 1591, Springer, Berlin, 1994.]) we studied in [G. Munteanu, The equations of a holomorphic subspace in a complex Finsler space, Publicationes Math. Debrecen, submitted for publication.] the Gauss, Codazzi and Ricci equations of a holomorphic subspace, the aim being to determine the interrelation between the holomorphic sectional curvature of the Chern–Finsler connection and that of its induced tangent connection.In the present paper, by means of the complex Berwald connection, we study totally geodesic holomorphic subspaces. With respect to complex Berwald connection the equations of the holomorphic subspace have simplified expressions. The totally geodesic subspace request is characterized by using the second fundamental form of complex Berwald connection.

Keywords
Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
,