Article ID Journal Published Year Pages File Type
839062 Nonlinear Analysis: Real World Applications 2008 14 Pages PDF
Abstract

The problem dealing with the two-dimensional flow of an incompressible viscoelastic Maxwell fluid past an infinite porous plate is investigated. It is assumed that the suction velocity is normal to the plate and oscillates about a mean value. The external free-stream velocity varies periodically in time. The resulting differential equation subject to the relevant boundary and initial conditions is numerically solved by means of a numerical technique, in which a coordinate transformation is employed to transform the semi-infinite physical space to a bounded computational domain. The effects of various values of the emerging parameters, e.g. the elasticity parameter, the oscillation amplitude and frequency of the external flow and the suction velocity, on the time series of velocity, especially on the boundary-layer structure near the plate, are discussed. The nature of the shear stress engendered due to the flow is also investigated.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, ,