Article ID Journal Published Year Pages File Type
839113 Nonlinear Analysis: Real World Applications 2008 11 Pages PDF
Abstract

In this paper, a discrete-time Hopfield neural network with delay is considered. We give some sufficient conditions ensuring the local stability of the equilibrium point for this model. By choosing the delay as a bifurcation parameter, we demonstrated that Neimark–Sacker bifurcation (or Hopf bifurcation for map) would occur when the delay exceeds a critical value. A formula for determining the direction bifurcation and stability of bifurcation periodic solutions is given by applying the normal form theory and the center manifold theorem. Some numerical simulations for justifying the theoretical results are also provided.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , ,