Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8395897 | Toxicon | 2014 | 8 Pages |
Abstract
Specific peptide toxins interact with voltage-gated sodium channels by regulating the activation or inactivation of targeted channels. However, few toxins possessing dual effects have been identified. In the present study, we showed that jingzhaotoxin-XI/κ-theraphotoxin-Cj1a (JZTX-XI), a 34-residue peptide from the venom of the Chinese spider Chilobrachys jingzhao, inhibits the sodium conductance (IC50 = 124 ± 26 nM) and slows the fast inactivation (EC50 = 1.18 ± 0.2 μM) of Nav1.5 expressed in Chinese hamster ovary (CHO-K1) cells. JZTX-XI significantly shifted the activation to more depolarized voltages and decreased the deactivation of Nav1.5 currents upon extreme depolarization, but only slightly affected voltage-dependence of steady-state inactivation. In addition, JZTX-XI caused an approximately five-fold decrease in the rate of recovery from inactivation and an approximately 1.9-fold reduction in the closed-state inactivation rate. Our data suggest that JZTX-XI integrates the functions of site 3 toxins (α-scorpion toxins) with site 4 toxins (β-scorpion and spider toxins) by targeting multiple sites on Nav1.5. The unique properties displayed by JZTX-XI in its inhibitory activity on Nav1.5 suggest that its mechanism of action is distinct from those of site 3 and site 4 toxins, making JZTX-XI a useful probe for investigating the gating mechanism of Nav1.5 and toxin-channel interactions.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry, Genetics and Molecular Biology (General)
Authors
Cheng Tang, Xi Zhou, Yin Huang, Yunxiao Zhang, Zhaotun Hu, Meichi Wang, Ping Chen, Zhonghua Liu, Songping Liang,