Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
839685 | Nonlinear Analysis: Theory, Methods & Applications | 2015 | 8 Pages |
Abstract
In this paper, we study the Cauchy problem of the parabolic Monge–Ampère equation {ut−log{g−1det(gij+∇iju)}=−nloguinMn×(0,∞),u(x,0)=u0(x)inMn, where MnMn is a compact complete Riemannian manifold of dimension n≥2n≥2, gijgij denotes the metric of MnMn, g=det(gij)>0g=det(gij)>0 and u0(x)>1u0(x)>1 is a smooth function. We prove the global existence of solutions.
Keywords
Related Topics
Physical Sciences and Engineering
Engineering
Engineering (General)
Authors
Qiang Ru,