Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8399073 | Mitochondrion | 2016 | 7 Pages |
Abstract
Hexokinase 2 (HK2) binds to Voltage-Dependent Anion Channel 1 (VDAC1) on mitochondrial outer membrane (MOM) to facilitate a preferential access of ATP to HK2 for glycolysis, in order to maintain a constant energy source for cell proliferation in cancer especially. While previous studies have discovered that the VDAC1 N-terminal helix is responsible for regulating molecules from within mitochondria to cytoplasm, the molecular mechanism of how HK2 is able to regulate the ATP access remains elusive. We hereby propose a model for the HK2-VDAC1 association. The model is then subjected to molecular dynamics (MD) simulations, where we probe the effect of HK2 binding on the mobility of the VDAC1 N-terminal helix. Results from the simulations show that HK2 binding restricts the movement of the VDAC1 N-terminal helix. As a result, VDAC1 is kept in the open state most of the time and probably allows a constant supply of ATP to HK2 for glycolysis.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biophysics
Authors
Dawei Zhang, Yew Mun Yip, Liben Li,