Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
839913 | Nonlinear Analysis: Theory, Methods & Applications | 2014 | 19 Pages |
Abstract
In this paper we study the global existence of small data solutions to utt−△u+2a(−△)σut=|u|p,u(0,x)=u0(x),ut(0,x)=u1(x), where a>0a>0, σ∈(0,1/2]σ∈(0,1/2] and p>1p>1. Assuming small data in some Sobolev spaces, we obtain the global existence for p>1+2/(n−2σ)p>1+2/(n−2σ), in space dimension n≤n¯, where n¯=n¯(σ)↗∞, as σ→1/2σ→1/2. In particular, our result holds in any space dimension n≥2n≥2 if σ=1/2σ=1/2.
Related Topics
Physical Sciences and Engineering
Engineering
Engineering (General)
Authors
M. D’Abbicco, M.R. Ebert,