Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8400386 | Progress in Biophysics and Molecular Biology | 2018 | 8 Pages |
Abstract
Common complex diseases are a result of host and environment interactions. One such putative environmental factor is the electromagnetic field exposure, especially the occupational extremely low frequency (ELF) magnetic field, 50 Hz, 1 mT, whose neurobiological relevance remains elusive. We evaluated the effects of long-term (60 days) ELF-MF exposure on miRNAs previously related to brain and human diseases (miR-26b-5p, miR-9-5p, miR-29a-3p, miR-106b-5p, miR-107, miR-125a-3p). A total of 64 young (3 weeks-old) and mature (10 weeks-old) male/female Wistar-Albino rats were divided into sham and ELF-MF exposed groups. After sacrifice of the animals, blood samples from rat's tail vein and brain tissues were collected. The expression levels of miRNAs were investigated with Real-Time PCR technique and TaqMan probe Technology. All miRNA expression levels of the young female rats show a significant decrease in blood according to brain samples (p < 0.05), but fewer miRNAs displayed a similar significant decrease in the blood. In conclusion, these new observations might inform future clinical biological psychiatry studies of long-term electromagnetic field exposure, and the ways in which host-environment interactions contribute to brain diseases.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biophysics
Authors
Mehmet Emin Erdal, Senay Görücü Yılmaz, Serkan Gürgül, CoÅar Uzun, Didem Derici, Nurten Erdal,