Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8400637 | Progress in Biophysics and Molecular Biology | 2017 | 73 Pages |
Abstract
Evolution by natural selection requires the following conditions: (1) a particular selective environment; (2) variation of traits in the population; (3) differential survival/reproduction among the types of organisms; and (4) heritable traits. However, the traditional (standard) model does not clearly explain how and why these conditions are generated or determined. What generates a selective environment? What generates new types? How does a certain type replace, or coexist with, others? In this paper, based on the holistic philosophy of Western and Eastern traditions, I focus on the ecosystem as a higher-level system and generator of conditions that induce the evolution of component populations; I also aim to identify the ecosystem processes that generate those conditions. In particular, I employ what I call the scientific principle of dependent-arising (SDA), which is tailored for scientific use and is based on Buddhism principle called “pratÄ«tya-samutpÄda” in Sanskrit. The SDA principle asserts that there exists a higher-level system, or entity, which includes a focal process of a system as a part within it; this determines or generates the conditions required for the focal process to work in a particular way. I conclude that the ecosystem generates (1) selective environments for component species through ecosystem dynamics; (2) new genetic types through lateral gene transfer, hybridization, and symbiogenesis among the component species of the ecosystem; (3) mechanistic processes of replacement of an old type with a new one. The results of this study indicate that the ecological extension of the theoretical model of adaptive evolution is required for better understanding of adaptive evolution.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biophysics
Authors
Toshiyuki Nakajima,