Article ID Journal Published Year Pages File Type
840180 Nonlinear Analysis: Theory, Methods & Applications 2013 11 Pages PDF
Abstract

In this paper we present a duality approach for finding a robust best approximation from a set involving interpolation constraints and uncertain inequality constraints in a Hilbert space that is immunized against the data uncertainty using a nonsmooth Newton method. Following the framework of robust optimization, we assume that the input data of the inequality constraints are not known exactly while they belong to an ellipsoidal data uncertainty set. We first show that finding a robust best approximation is equivalent to solving a second-order cone complementarity problem by establishing a strong duality theorem under a strict feasibility condition. We then examine a nonsmooth version of Newton’s method and present their convergence analysis in terms of the metric regularity condition.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , , ,