Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
840400 | Nonlinear Analysis: Theory, Methods & Applications | 2012 | 18 Pages |
In this paper, we consider the three dimensional compressible non-isentropic Navier–Stokes–Poisson equations with the potential external force. Under the smallness assumption of the external force in some Sobolev space, the existence of the stationary solution is established by solving a nonlinear elliptic system. Next, we show global well-posedness of the initial value problem for the three dimensional compressible non-isentropic Navier–Stokes–Poisson equations, provided the prescribed initial data is close to the stationary solution. Finally, based on the elaborate energy estimates for the nonlinear system and L2L2-decay estimates for the semigroup generated by the linearized equation, we give the optimal L2L2-convergence rates of the solutions toward the stationary solution.