Article ID Journal Published Year Pages File Type
840440 Nonlinear Analysis: Theory, Methods & Applications 2012 11 Pages PDF
Abstract

In this paper we introduce a new logarithmic entropy functional for the linear heat equation on complete Riemannian manifolds and prove that it is monotone decreasing on complete Riemannian manifolds with nonnegative Ricci curvature. Our results are simpler version, without Ricci flow, of R.-G. Ye’s recent result (arXiv:math.DG/0708.2008). As an application, we apply the monotonicity of the logarithmic entropy functional of heat kernels to characterize Euclidean space.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
,