Article ID Journal Published Year Pages File Type
840727 Nonlinear Analysis: Theory, Methods & Applications 2012 15 Pages PDF
Abstract

The proximal average of a finite collection of convex functions is a parameterized convex function that provides a continuous transformation between the convex functions in the collection. This paper analyzes the dependence of the optimal value and the minimizers of the proximal average on the weighting parameter. Concavity of the optimal value is established and implies further regularity properties of the optimal value. Boundedness, outer semicontinuity, single-valuedness, continuity, and Lipschitz continuity of the minimizer mapping are concluded under various assumptions. Sharp minimizers are given further attention. Several examples are given to illustrate our results.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , ,