Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8409656 | Drug Discovery Today | 2018 | 13 Pages |
Abstract
Injection/infusion reactions to nanopharmaceuticals (and particulate drug carriers) are idiosyncratic and well documented. The molecular basis of nanoparticle-mediated injection reactions is debatable, with two hypotheses as front-runners. The first is complement-activation-related 'pseudoallergy', where a causal role for nanoparticle-mediated complement activation in injection/infusion reactions is considered. However, the second hypothesis (the rapid phagocytic response hypothesis) states a transitional link from robust clearance of nanoparticles (NPs) from the blood by strategically placed responsive macrophages to adverse hemodynamic and cardiopulmonary reactions, regardless of complement activation. Here, I critically examine and discuss these hypotheses. Current experimentally derived evidence appears to be more in support of the rapid phagocytic response hypothesis than of the 'pseudoallergy' hypothesis.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biotechnology
Authors
Seyed Moein Moghimi,