Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
841213 | Nonlinear Analysis: Theory, Methods & Applications | 2012 | 14 Pages |
This paper focuses on nonlinear perturbations of flows in Banach spaces, corresponding to a nonautonomous dynamical system on measure chains admitting a nonuniform exponential dichotomy. We first define the nonuniform exponential dichotomy of linear nonuniformly hyperbolic systems on measure chains, then establish a new version of the Grobman–Hartman theorem for nonuniformly hyperbolic dynamics on measure chains with the help of nonuniform exponential dichotomies. Moreover, we also construct stable invariant manifolds for sufficiently small nonlinear perturbations of a nonuniform exponential dichotomy. In particular, it is shown that the stable invariant manifolds are Lipschitz in the initial values provided that the nonlinear perturbation is a sufficiently small Lipschitz perturbation.