Article ID Journal Published Year Pages File Type
841377 Nonlinear Analysis: Theory, Methods & Applications 2010 11 Pages PDF
Abstract

Considering a general optimization problem, we attach to it by means of perturbation theory two dual problems having in the constraints a subdifferential inclusion relation. When the primal problem and the perturbation function are particularized different new dual problems are obtained. In the special case of a constrained optimization problem, the classical Wolfe and Mond–Weir duals, respectively, follow as particularizations of the general duals by using the Lagrange perturbation. Examples to show the differences between the new duals are given and a gate towards other generalized convexities is opened.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, ,