Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8414053 | European Journal of Pharmaceutics and Biopharmaceutics | 2014 | 10 Pages |
Abstract
The present investigation was aimed at exploring the targeting potential of sulfasalazine (NF-κB inhibitor drug) loaded fucose tethered poly (propylene imine) (PPI) dendritic nanoarchitecture (SSZ-FUCO-PPID) to Kupffer cells for effective management of cytokine-induced liver damage. The SSZ-FUCO-PPID formulation was characterized for entrapment efficiency, in vitro release, stability, toxicological investigations, macrophage uptake, NF-κB inhibition, and in vivo studies. In cell uptake assay the uptake of SSZ-FUCO-PPID was found to be higher and preferentially by J774 macrophage cell line. Cytokine assay suggested that the SSZ-FUCO-PPID potentially inhibited the IL-12 p40 production in LPS activated macrophages. Western blot analysis clearly suggested that SSZ-FUCO-PPID inhibited the activation of NF-κB as indicated by the absence of p-IκB band. Pharmacokinetic study revealed improved bioavailability, half-life and mean residence time of SSZ upon fucosylation of dendrimers. The biodistribution pattern clearly established the higher amount of SSZ-FUCO-PPID in liver. Hematological data suggest that the fucosylated formulations are less immunogenic as compared to unconjugated formulations. The results suggest that the SSZ-FUCO-PPID formulation holds targeting potential to Kupffer cells for the treatment of cytokine-induced liver damage.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biotechnology
Authors
Richa Gupta, Neelesh Kumar Mehra, Narendra Kumar Jain,