Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8414371 | European Journal of Pharmaceutics and Biopharmaceutics | 2013 | 11 Pages |
Abstract
Quantitative dehydration studies of dibasic calcium phosphate anhydrous (DCPA) in a small-scale cold-model fluidized bed dryer with process air control were conducted. Near-infrared spectroscopy (NIRS) with partial least squares regression (PLSR) was used to predict DCPAs' residual moisture content. Loss-on-drying (LOD) was employed as a reference method and confirmed the actual moisture content of DCPA. First, dynamic PLSR modeling was carried out, i.e., the NIR spectra were on-line recorded and predicted throughout the drying process. Secondly, PLSR off-line modeling was performed, i.e., samples were consecutively thief-probed from the processor, put into glass vials and analyzed off-line. Furthermore, two background spectra were collected prior to the in- and off-line measurements in an attempt to increase the method's sensitivity, i.e., (i) dry DCPA that was fluidized at respective process air velocity (on-line) or inside a glass vial (off-line) and (ii) Spectralon® - a highly reflecting standard reference material made of fluoropolymer. Benefits and drawbacks of the in- and off-line approaches with different spectral backgrounds are discussed in detail. The results indicated that (i) the thief-probed sample amount from the processor and thus the sample weight and (ii) the downtime between thief-probing a sample and its actual analysis via NIRS and LOD can bias the moisture content predictions.
Keywords
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biotechnology
Authors
Nicolas Heigl, Daniel M. Koller, Benjamin J. Glasser, Fernando J. Muzzio, Johannes G. Khinast,