Article ID Journal Published Year Pages File Type
841590 Nonlinear Analysis: Theory, Methods & Applications 2011 20 Pages PDF
Abstract
We study the boundary exact controllability for a system of two quasi-linear wave equations coupled in parallel with springs and viscous terms. We prove the locally exact controllability around superposition equilibria under some checkable geometrical conditions. We then establish the globally exact controllability in such a way that the state of the coupled quasi-linear system moves from a superposition equilibrium in one location to a superposition equilibrium in another location. Our results show that exact controllability is geometrical characters of a Riemannian metric, given by the coefficients and superposition equilibria of the system.
Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , ,