Article ID Journal Published Year Pages File Type
841615 Nonlinear Analysis: Theory, Methods & Applications 2010 16 Pages PDF
Abstract

This paper is concerned with the study of the existence and decay of solutions of the following initial value problem: equation(∗)|Bu′′(t)+M(‖u(t)‖Wβ)Au(t)+(1+k(t)‖u(t)‖D(Sα+2)β)Au′(t)=0,t>0u(0)=u0,u′(0)=u1, where VV is a Hilbert space with dual V′V′; AA and BB symmetric linear operators from VV into V′V′ with 〈Bv,v〉>0〈Bv,v〉>0, v≠0v≠0, and 〈Av,v〉≥γ‖v‖V2, γ>0γ>0; SS a restriction of the operator A;WA;W a Banach space; M(ξ)M(ξ) the real function M(ξ)=m0+m1ξM(ξ)=m0+m1ξ with m0>0m0>0 and m1≥0m1≥0 real numbers; kk a positive function and α,βα,β real numbers with α≥0α≥0 and β>1β>1.The successive approximation method, the characterization of the derivative of M(‖u(t)‖Wβ) and the Arzela–Áscoli Theorem allow us to obtain a local solution of (∗). The global solution follows by the prolongation method of solutions. The exponential decay of the solution is derived by the perturbed energy method.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, ,