Article ID Journal Published Year Pages File Type
8418473 Journal of Immunological Methods 2012 9 Pages PDF
Abstract
Neutrophil-activating protein (NAP) is a major virulence factor expressed by Helicobacter pylori isolates associated with severe chronic gastroduodenal inflammation and peptic ulcers. NAP is one of the main protective antigens and a target for vaccine development against Helicobacter infection. In addition, NAP is a potent immune stimulator with potential application as a general vaccine adjuvant and in treatment of allergic diseases and cancer immunotherapy. NAP-specific immunoassays are needed for both H. pylori diagnostics and characterization of NAP-based vaccines and immunomodulatory preparations. We generated a panel of NAP-specific monoclonal antibodies (MAbs) by immunization of BALB/c mice with synthetic NAP peptides. The antibody reactivity against recombinant or native NAP antigen was characterized by enzyme-linked immunosorbent assay (ELISA), immunoblotting and immunofluorescence. A sensitive capture ELISA was developed using MAbs 23C8 and 16F4 (directed against different NAP epitopes) for detection of native or measles virus (MV) vector-expressed recombinant NAP in a concentration range of 4 ng/ml to 2000 ng/ml. MAb 23C8 antigen-binding depends on Tyr101 in a variable amino acid sequence of the NAP molecule, indicating the existence of antigenic variants among H. pylori strains. MAb 16F4 reacted with NAP from different H. pylori strains and was a sensitive tool for detection of small amounts of isolated NAP antigen or whole bacteria by immunoblotting or immunofluorescence. In conclusion, MAb-based immunoassays are highly specific and sensitive for detection of native NAP antigen and recombinant NAP immunostimulatory transgenes expressed by replication competent virus vectors.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biotechnology
Authors
, , , ,