| Article ID | Journal | Published Year | Pages | File Type | 
|---|---|---|---|---|
| 842037 | Nonlinear Analysis: Theory, Methods & Applications | 2011 | 4 Pages | 
Abstract
												Let Lu=−∑i,j=1Naij(x,u)Diju+c(x,u)u. Consider the quasilinear elliptic equation Lu=f(x,u,∇u)Lu=f(x,u,∇u) on a bounded smooth domain ΩΩ in RNRN, where c(x,r)≥α>0c(x,r)≥α>0, f(x,r,ξ)=o[|r|+h(|r|)|ξ|2]f(x,r,ξ)=o[|r|+h(|r|)|ξ|2]. It is shown that if the oscillation of aij(x,r)aij(x,r) with respect to rr is sufficiently small, then there exists a solution u∈W2,p(Ω)∩W01,p(Ω) to the equation Lu=f(x,u,∇u)Lu=f(x,u,∇u).
Related Topics
												
													Physical Sciences and Engineering
													Engineering
													Engineering (General)
												
											Authors
												Tsang-Hai Kuo, Yi-Jung Chen, 
											