Article ID Journal Published Year Pages File Type
8432024 Blood Reviews 2018 10 Pages PDF
Abstract
Sickle cell anemia (SCA) is an autosomal recessive disorder caused by mutation in the β-globin gene. Pulmonary hypertension (PH), a complication of SCA, results in severe morbidity and mortality. PH is a multifactorial disease: systemic vasculopathy, pulmonary vasoconstriction, and endothelial dysfunction and remodeling. Placenta growth factor (PlGF), an angiogenic growth factor, elaborated from erythroid cells, has been shown to contribute to inflammation, pulmonary vasoconstriction and airway hyper-responsiveness (AH) in mouse models of sickle cell disease. In this review, we summarize the cell-signaling mechanism(s) by which PlGF regulates the expression of genes involved in inflammation, PH and AH in cell culture and corroborate these findings in mouse models of SCA and in individuals with SCA. The role of microRNAs (miRNAs) in the post-transcriptional regulation of these genes is presented and how these miRNAs located in their host genes are transcriptionally regulated. An understanding of the transcriptional regulation of these miRNAs provides a new therapeutic approach to ameliorate the clinical manifestations of SCA.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cancer Research
Authors
, , , ,