Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
843224 | Nonlinear Analysis: Theory, Methods & Applications | 2009 | 36 Pages |
Abstract
This paper is devoted to multiplicative inequalities in some generalized Sobolev spaces associated with Lie algebras. These Lie algebras are generated by the differential operator of variable coefficients or by pseudo-differential operators having non-regular symbols. Under geometrical assumptions we show that the norms of two suitable classes of generalized Sobolev spaces are equivalent. This leads to the proof that the composition operator uâ|u|p acts on such spaces.
Related Topics
Physical Sciences and Engineering
Engineering
Engineering (General)
Authors
Vladimir Georgiev, Sandra Lucente,