Article ID Journal Published Year Pages File Type
843410 Nonlinear Analysis: Theory, Methods & Applications 2009 12 Pages PDF
Abstract

To study the problem of the assigned Gauss curvature with conical singularities on Riemannian manifolds, we consider the Liouville equation with a single Dirac measure on the two-dimensional sphere. By a stereographic projection, we reduce the problem to a Liouville equation on the Euclidean plane. We prove new multiplicity results for bounded radial solutions, which improve on earlier results of C.-S. Lin and his collaborators. Based on numerical computations, we also present various conjectures on the number of unbounded solutions. Using symmetries, some multiplicity results for non-radial solutions are also stated.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , ,