Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8435421 | Cancer Letters | 2015 | 7 Pages |
Abstract
The mammalian target of rapamycin complex 1 (mTORC1) is a critical regulator of G1 cell cycle progression. Two key substrates of mTORC1 are ribosomal subunit S6 kinase (S6K) and eukaryotic initiation factor 4E (eIF4E) binding protein-1 (4E-BP1). We reported previously that simultaneous knockdown of S6K and eIF4E causes a transforming growth factor-β (TGF-β)-dependent G1 cell cycle arrest in MDA-MB-231 human breast cancer cells. Rapamycin inhibits the phosphorylation of S6K at nano-molar concentrations in MDA-MB-231 cells; however, micro-molar concentrations of rapamycin are required to inhibit phosphorylation of 4E-BP1 - the phosphorylation of which liberates eIF4E to initiate translation. Micro-molar doses of rapamycin are required for complete G1 cell cycle arrest - indicating that 4E-BP1 is a critical target of mTOR for promoting cell cycle progression. Data are provided demonstrating that G1 cell cycle arrest induced by rapamycin is due to up-regulation of TGF-β signaling and down-regulation of Rb phosphorylation via phosphorylation of the mTORC1 substrates S6K and 4E-BP1 respectively. These findings enhance the current understanding of the cytostatic effects of mTORC1 suppression with therapeutic implications.
Keywords
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Cancer Research
Authors
Amrita Chatterjee, Suman Mukhopadhyay, Kaity Tung, Deven Patel, David A. Foster,