Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8437004 | EBioMedicine | 2018 | 11 Pages |
Abstract
Mucus secretion accumulation in the airways may act as a contributing factor for the development of airflow limitation in severe fetal asthma patients. Accumulated evidences showed that transforming growth factor beta (TGF-β) plays a regulatory role in airway remodeling including mucus hyper-secretion in asthma. However, the detailed molecular mechanisms of TGF-β3 induced MUC5AC hyper-expression in airway epithelium remains unclear. Here, we demonstrated the pivotal roles of autophagy in regulation of MUC5AC hyper-production induced by TGF-β3 in airway epithelium. Our experimental data showed that inhibiting autophagy pathway in repeated ovalbumin (OVA) exposed mice exhibited decreased airway hyper-response and airway inflammation, diminishing the expression of Muc5ac and TGF-β3. Furthermore, our studies demonstrated that autophagy was induced upon exposure to TGF-β3 and then mediated MUC5AC hyper-expression by activating the activator protein-1 (AP-1) in human bronchial epithelial cells. Finally, Smad2/3 pathway was involved in TGF-β3-induced MUC5AC hyper-expressions by promoting autophagy. These data indicated that autophagy was required for TGF-β3 induced airway mucous hyper-production, and that inhibition of autophagy exerted therapeutic benefits for TGF-β3 induced airway mucus secretion.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Cancer Research
Authors
Yun Zhang, Hongmei Tang, Xiefang Yuan, Qin Ran, Xiaoyun Wang, Qi Song, Lei Zhang, Yuhuan Qiu, Xing Wang,