Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
843937 | Nonlinear Analysis: Theory, Methods & Applications | 2007 | 7 Pages |
Abstract
Let KK be a compact convex subset of a real Hilbert space HH; T:K→KT:K→K a hemicontractive map. Let {αn}{αn} be a real sequence in [0,1] satisfying appropriate conditions; then for arbitrary x0∈Kx0∈K, the sequence {xn}{xn} defined iteratively by xn=αnxn−1+(1−αn)Txnxn=αnxn−1+(1−αn)Txn, n≥1n≥1 converges strongly to a fixed point of TT.
Related Topics
Physical Sciences and Engineering
Engineering
Engineering (General)
Authors
Arif Rafiq,