Article ID Journal Published Year Pages File Type
844400 Nonlinear Analysis: Theory, Methods & Applications 2007 12 Pages PDF
Abstract

In this paper, we study stability and L2L2 gain properties for a class of switched systems which are composed of normal   discrete-time subsystems. When all subsystems are Schur stable, we show that a common quadratic Lyapunov function exists for all subsystems and that the switched normal system is exponentially stable under arbitrary switching. For L2L2 gain analysis, we introduce an expanded matrix including each subsystem’s coefficient matrices. Then, we show that if the expanded matrix is normal and Schur stable so that each subsystem is Schur stable and has unity L2L2 gain, then the switched normal system also has unity L2L2 gain under arbitrary switching. The key point is establishing a common quadratic Lyapunov function for all subsystems in the sense of unity L2L2 gain.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , , , ,