Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
844923 | Nonlinear Analysis: Theory, Methods & Applications | 2006 | 23 Pages |
Abstract
In this paper, we consider the problem (Pε)(Pε) : Δ2u=un+4/n-4+εu,u>0Δ2u=un+4/n-4+εu,u>0 in Ω,u=Δu=0Ω,u=Δu=0 on ∂Ω∂Ω, where ΩΩ is a bounded and smooth domain in Rn,n>8Rn,n>8 and ε>0ε>0. We analyze the asymptotic behavior of solutions of (Pε)(Pε) which are minimizing for the Sobolev inequality as ε→0ε→0 and we prove existence of solutions to (Pε)(Pε) which blow up and concentrate around a critical point of the Robin's function. Finally, we show that for εε small, (Pε)(Pε) has at least as many solutions as the Ljusternik–Schnirelman category of ΩΩ.
Related Topics
Physical Sciences and Engineering
Engineering
Engineering (General)
Authors
Khalil El Mehdi, Abdlebaki Selmi,