Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8450881 | Experimental Cell Research | 2018 | 24 Pages |
Abstract
Macrophage polarization plays a crucial role in regulating myocardial inflammation and injuries of coxsackievirus B3 (CVB3)-induced viral myocarditis (VM). It has been reported that miR-223 is a potent regulator of inflammatory responses that involved in macrophage polarization. However, the functional roles of miR-223 in CVB3-induced VM still remain unknown. Here, we found that miR-223 expression was significantly down-regulated in heart tissues and heart-infiltrating macrophages of CVB3-infected mice. Up-regulation of miR-223 in vivo protected the mice against CVB3-induced myocardial injuries characterized by the increased body weight and survival, enhanced left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS), relieved inflammation, depressed creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH) and aspartate transaminase (AST) levels, reduced production of interferon (IFN)-γ, interleukin (IL)ââ¯6 as well as increased IL-10. We subsequently found that miR-233 up-regulation significantly suppressed the expression of M1 markers (iNOS, TNF-α and CD 86), and promoted the expression of M2 markers (Arginase-1, Fizz-1 and CD 206) in vivo and in vitro. Furthermore, we confirmed that miR-223 directly targeted Pknox1 to inhibit its expression, and the expression of Pknox1 was inversely correlated with miR-223 expression in heart tissues and heart-infiltrating macrophages of CVB3-infected mice. Gain-of-function analyses indicated that Pknox1 overexpression partially reversed the polarization phenotypes regulated by miR-223 overexpression. Taken together, the data suggest that miR-223 protects against CVB3-induced inflammation and myocardial damage, which may partly attribute to the regulation of macrophage polarization via targeting Pknox1.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Cancer Research
Authors
Weihui Gou, Zhen Zhang, Chunfeng Yang, Yumei Li,