Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8453322 | Leukemia Research | 2018 | 7 Pages |
Abstract
Fast identification of BCR-ABL fusion genes is critical for precise diagnosis, risk stratification and therapy scheme selection in leukemia. More convenient methods are needed for quickly detection of the BCR-ABL fusion genes. Multiplex fluorescent reverse transcription quantitative real-time PCR (Multiplex RT-qPCR) methods are developed for detection of the at least 14 subtypes of BCR-ABL fusion genes in one tube at a time by using patients' bone marrow samples. The new Multiplex RT-qPCR method could quickly detect BCR-ABL fusion genes with sensitivity up to 10-106 copies. It can detect the fusion genes in patients' bone marrow samples containing any subtypes of the major bcr (M-bcr) e13a2, e14a2, e13a3 and e14a3, the minor bcr (m-bcr) e1a2 and e1a3, the micro bcr (μ-bcr) e19a2 and e19a3, and the nano bcr (n-bcr) e6a2 and e6a3. The specificity is comparable to the FISH methods. The cutoff for clinical diagnosis of BCR-ABL(+) is also determined by testing in clinical chronic myeloid leukemia samples. This is a new fast method with high sensitivity and specificity for clinical detection of BCR-ABL fusion genes. It will benefit the precise diagnosis, targeted therapy and minimal residual disease (MRD) monitoring in leukemia.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Cancer Research
Authors
Yong-Qing Tong, Zhi-Jun Zhao, Bei Liu, An-Yu Bao, Hong-Yun Zheng, Jian Gu, Ying Xia, Mary McGrath, Sinisa Dovat, Chun-Hua Song, Yan Li,