Article ID Journal Published Year Pages File Type
846328 Optik - International Journal for Light and Electron Optics 2014 6 Pages PDF
Abstract

An integrated tunable optical filter (TOF) based on thermo-optic effect in silicon on insulator (SOI) rib waveguide is designed and simulated. The device is comprised of two high refractivity contrast Si/Air stacks, functioning as high reflectivity of DBRs (distributed Bragg reflectors) and separating by a variable refractive index polymer Fabry–Perot (F–P) cavity. The designed device exhibits Q = 24077, FWHM = 0.065 nm and finesse = 566. Wavelength tuning is achieved through thermal modulation of refractive variation of the cavity. As the cavity polymer is heated, the refractive index of the cavity decreases. When the temperature of cavity polymer changes within 105, the central wavelength gets a continuous 35 nm shift from 1530 nm to 1565 nm, which can operate the whole C-band in the WDM (wavelength division multiplexing) networks. Moreover, by calculating, the tuning sensitivity is about 0.33 nm/°C. Owing to the compact size and excellent characteristics of integration, the proposed component has a promising utilization in spectroscopy and optical communication.

Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , , , , , , , ,