Article ID Journal Published Year Pages File Type
8463538 Cellular Immunology 2018 32 Pages PDF
Abstract
The Class I phosphatidylinositol 3-kinase inhibitor, 2-(2-difluoromethy lbenzimidazol-1-yl)-4,6-dimorpholino-1,3,5-triazine (ZSTK474), has anti-inflammatory and immunoregulatory properties. However, whether it can be used to treat Guillain-Barré syndrome (GBS)-a neuroinflammatory disorder-is unknown. We induced experimental autoimmune neuritis (EAN) in Lewis rats, an established model of GBS. Orally administered ZSTK474 decreased neurological deficits in the GBS model, as demonstrated by diminished inflammatory cell infiltration, and ameliorated demyelination of sciatic nerves. Additionally, ZSTK474 decreased the number of Th1/Th17 cells and levels of the proinflammatory cytokines interleukin (IL)-1α, IL-1β, IL-17, IL-23, interferon-γ, and tumor necrosis factor-α. We propose that the phosphoinositide 3-kinase/AKT/mammalian target of rapamycin complex 1 (PI3K/AKT/mTORC1) pathway likely contributed to the neuroprotective effect of ZSTK474. ZSTK474 effectively decreases the frequency of Th1/Th17 cells, thereby reducing the production of proinflammatory cytokines and successfully alleviating the symptoms of EAN. Thus, the neuroprotective effect of ZSTK474 indicates its potential utility as anti-inflammatory therapy for GBS.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cell Biology
Authors
, , , , , , , ,