Article ID Journal Published Year Pages File Type
8463545 Cellular Immunology 2018 30 Pages PDF
Abstract
T-cell-mediated destruction of pancreatic β cells leads to Type 1 diabetes (TID). Vitamin D-Binding Protein (VDBP) has been identified as an autoantigen and T cell reactivity against VDBP increases in the development of T1D. Autoreactive cytotoxic T lymphocytes (CTLs) recognize β-cell-derived peptides in the context of major histocompatibility complex class I molecules. However, little is known about the VDBP-derived immunogenic peptides that are presented in the context of human HLA molecules. Here, we predicted and identified VDBP derived immunogenic peptides that were presented in association with human HLA-A2 molecule. The VDBP derived peptides binding to HLA-A∗0201 were predicted by using a computer-assisted algorithm. The candidate peptides were synthesized, then affinity between peptides and HLA-A∗0201 were analyzed. In addition, the CTL activity of the peptides was detected by cytotoxicity assay and ELISPOT assay in vitro. Furthermore, HLA-A∗0201-transgenic mice were immunized with peptides to induce the CTL activity in vivo. The results demonstrated that peptides of VDBP containing residues 211-219 and 235-243 had high affinity with HLA-A∗0201. In addition, these peptides elicited potent CTL responses in vitro, and induced T1D in vivo. Therefore, this experiment identified immunogenic HLA-A∗0201-restricted epitopes derived from VDBP, and provided pathogenesis theory of T1D.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cell Biology
Authors
, , , , , ,