Article ID Journal Published Year Pages File Type
8465411 Current Opinion in Cell Biology 2015 9 Pages PDF
Abstract
Dramatic epigenetic changes take place during mammalian differentiation from the naïve pluripotent state including the silencing of one of the two X chromosomes in female cells through X chromosome inactivation. Conversely, reprogramming of somatic cells to naive pluripotency is coupled to X chromosome reactivation (XCR). Recent studies in the mouse system have shed light on the mechanisms of XCR by uncovering the timing and steps of XCR during reprogramming to induced pluripotent stem cells (iPSCs), allowing the generation of testable hypotheses during embryogenesis. In contrast, analyses of the X chromosome in human iPSCs have revealed important differences between mouse and human reprogramming processes that can partially be explained by the establishment of distinct pluripotent states and impact disease modeling and the application of human pluripotent stem cells. Here, we review recent literature on XCR as a readout and determinant of reprogramming to pluripotency.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cell Biology
Authors
, ,